43 research outputs found

    Smart Monitoring Based on Novelty Detection and Artificial Intelligence Applied to the Condition Assessment of Rotating Machinery in the Industry 4.0

    Get PDF
    The application of condition monitoring strategies for detecting and assessing unexpected events during the operation of rotating machines is still nowadays the most important equipment used in industrial processes; thus, their appropriate working condition must be ensured, aiming to avoid unexpected breakdowns that could represent important economical loses. In this regard, smart monitoring approaches are currently playing an important role for the condition assessment of industrial machinery. Hence, in this work an application is presented based on a novelty detection approach and artificial intelligence techniques for monitoring and assessing the working condition of gearbox-based machinery used in processes of the Industry 4.0. The main contribution of this work lies in modeling the normal working condition of such gearbox-based industrial process and then identifying the occurrence of faulty conditions under a novelty detection framework

    Fundamental frequency suppression for the detection of broken bar in induction motors at low slip and frequency

    Get PDF
    Producción CientíficaBroken rotor bar (BRB) is one of the most common failures in induction motors (IMs) these days; however, its identification is complicated since the frequencies associated with the fault condition appear near the fundamental frequency component (FFC). This situation gets worse when the IM slip or the operation frequency is low. In these circumstances, the common techniques for condition monitoring may experience troubles in the identification of a faulty condition. By suppressing the FFC, the fault detection is enhanced, allowing the identification of BRB even at low slip conditions. The main contribution of this work consists of the development of a preprocessing technique that estimates the FFC from an optimization point of view. This way, it is possible to remove a single frequency component instead of removing a complete frequency band from the current signals of an IM. Experimentation is performed on an IM operating at two different frequencies and at three different load levels. The proposed methodology is compared with two different approaches and the results show that the use of the proposed methodology allows to enhance the performance delivered by the common methodologies for the detection of BRB in steady state.CONACyT scholarship (415315)Project FOFI-UAQ 2018 FIN201812PRODEP UAQ-PTC-385 gran

    Novelty Detection Methodology Based on Self-Organizing Maps for Power Quality Monitoring

    Get PDF
    The inclusion of intelligent systems in the modern industry is demanding the development of the automatic monitoring and continuous analysis of the data related to entire processes, this is a challenge of the industry 4.0 for the energy management. In this regard, this chapter proposes a novelty detection methodology based on Self-Organizing Maps (SOM) for Power Quality Monitoring. The contribution and originality of this proposed method consider the characterization of synthetic electric power signals by estimating a meaningful set of statistical time-domain based features. Subsequently, the modeling of the data distribution through a collaborative SOM’s neuron grid models facilitates the detection of novel events related to the occurrence of power disturbances. The performance of the proposed method is validated by analyzing and assessing four different conditions such as normal, sag, swell, and fluctuations. The obtained results make the proposed method suitable for being implemented in embedded systems for online monitoring

    Analysis of the Effects Produced by Pure Sine and Modified Sine Inverters in an Induction Motor

    Get PDF
    Most of the industrial applications are supported by complex machinery, which in turn are supported by electrical motors to perform specific tasks in multiple processes. Certainly, induction motors are the most widely used electrical machines in a majority of industrial machineries; in this sense, their operating condition plays an important role to ensure the machinery availability and to avoid unwanted stoppages. On the other hand, several sources may lead to producing faults in induction motors, but most of the common faults are produced by electrical or mechanical stresses, where the mechanical stresses are usually produced by unbalances or misalignments and the electrical stresses are generated by fluctuations or variations in the power supply. Thereby, when the induction motors are fed through inverters due to renewable energy, their operation may present slight variations since the sine wave has no perfect generation. In this regard, this work presents an analysis of the effects produced by pure sine and modified sine inverters in an induction motor. Such analysis consists of studying the characteristic patterns, reflected as percentage variations in some metrics, such as ranges, rms values, and harmonic distortion, that induction motors produce over vibration signals, electrical signals (stator current and fed voltages), and rotating speed

    Spectral kurtosis based methodology for the identification of stationary load signatures in electrical signals from a sustainable building

    Get PDF
    Producción CientíficaThe increasing use of nonlinear loads in the power grid introduces some unwanted effects, such as harmonic and interharmonic contamination. Since the existence of spectral contamination causes waveform distortion that may be harmful to the loads that are connected to the grid, it is important to identify the frequency components that are related to specific loads in order to determine how relevant their contribution is to the waveform distortion levels. Due to the diversity of frequency components that are merged in an electrical signal, it is a challenging task to discriminate the relevant frequencies from those that are not. Therefore, it is necessary to develop techniques that allow performing this selection in an efficient way. This paper proposes the use of spectral kurtosis for the identification of stationary frequency components in electrical signals along the day in a sustainable building. Then, the behavior of the identified frequencies is analyzed to determine which of the loads connected to the grid are introducing them. Experimentation is performed in a sustainable building where, besides the loads associated with the normal operation of the building, there are several power electronics equipment that is used for the electric generation process from renewable sources. Results prove that using the proposed methodology it is possible to detect the behavior of specific loads, such as office equipment and air conditioning.Universidad de Valladolid y Consejo Mexicano de Ciencia y Tecnología (CONACYT) - (grant 743842)Universidad Autónoma de Querétaro, Fondo para el Desarrollo del Conocimiento (FONDEC-UAQ 2020) - (project FIN202011

    Power disturbance monitoring through techniques for novelty detection on wind power and photovoltaic generation

    Get PDF
    Novelty detection is a statistical method that verifies new or unknown data, determines whether these data are inliers (within the norm) or outliers (outside the norm), and can be used, for example, in developing classification strategies in machine learning systems for industrial applications. To this end, two types of energy that have evolved over time are solar photovoltaic and wind power generation. Some organizations around the world have developed energy quality standards to avoid known electric disturbances; however, their detection is still a challenge. In this work, several techniques for novelty detection are implemented to detect different electric anomalies (disturbances), which are k-nearest neighbors, Gaussian mixture models, one-class support vector machines, self-organizing maps, stacked autoencoders, and isolation forests. These techniques are applied to signals from real power quality environments of renewable energy systems such as solar photovoltaic and wind power generation. The power disturbances that will be analyzed are considered in the standard IEEE-1159, such as sag, oscillatory transient, flicker, and a condition outside the standard attributed to meteorological conditions. The contribution of the work consists of the development of a methodology based on six techniques for novelty detection of power disturbances, under known and unknown conditions, over real signals in the power quality assessment. The merit of the methodology is a set of techniques that allow to obtain the best performance of each one under different conditions, which constitutes an important contribution to the renewable energy systems.Postprint (published version

    Genetic algorithm methodology for the estimation of generated power and harmonic content in photovoltaic generation

    Get PDF
    Producción CientíficaRenewable generation sources like photovoltaic plants are weather dependent and it is hard to predict their behavior. This work proposes a methodology for obtaining a parameterized model that estimates the generated power in a photovoltaic generation system. The proposed methodology uses a genetic algorithm to obtain the mathematical model that best fits the behavior of the generated power through the day. Additionally, using the same methodology, a mathematical model is developed for harmonic distortion estimation that allows one to predict the produced power and its quality. Experimentation is performed using real signals from a photovoltaic system. Eight days from different seasons of the year are selected considering different irradiance conditions to assess the performance of the methodology under different environmental and electrical conditions. The proposed methodology is compared with an artificial neural network, with the results showing an improved performance when using the genetic algorithm methodology.CONACYT (scholarship 415315)FOFI –UAQ 2018 (project FIN201812)PRODEP (project UAQ-PTC-385

    New Trends and Challenges in Condition Monitoring Strategies for Assessing the State-of-charge in Batteries

    Get PDF
    Condition monitoring strategies play an important key role to ensure the proper operation and/or working conditions in electrical, mechanical, and electronic systems; in this sense, condition monitoring methods are commonly implemented aiming to avoid undesired breakdowns and are also implemented to extend the useful life of the evaluated elements as much as possible. Therefore, the objective of this work is to report the new trends and challenges related to condition monitoring strategies for assessing the state-of-charge in batteries under the Industry 4.0 framework. Specifically, this work is focused on the analysis of those signal processing and artificial intelligence techniques that are implemented in experimental and model-based assessing approaches. With this work, important aspects may be highlighted as well as the conclusions and prospects may be included for the development trend of condition monitoring strategies to assess and ensure the state-of-charge in batteries

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe
    corecore